2013年12月30日 星期一

The Reliable Software Developers’ Conference – UK, May 2014

Technology event organiser Energi Technical has announced that it will be launching "The Reliable Software Developers' Conference", scheduled for May 2014.
This one-day conference will provide an important forum for engineers and developers working in the development of safety critical systems and high availability systems. It is expected to attract software developers working in such industries as automotive, railway systems, aerospace, bankingmedical and energy. www.rsd-conference.co.uk
"In recent years, software has become so complex that ensuring safety and reliability is now a major challenge," said Richard Blackburn, Event Organiser. "Many systems now have millions of lines of code and will handle enormous amounts of data. Further to this, modern computer based systems will make millions of decisions every second and also have to be immune to interference and unpredictable events. This event will look at the MISRA coding standards, debug tools and software testing tools that are available to assist software programmers and engineers seeking to develop reliable and safety critical
systems."
The Reliable Software Developers' Conference will be co-located with the 2014 UK Device Developers' Conference. Both will be a one-day conference to be run in Bristol, Cambridge, Northern England and Scotland on May 20th, May 20rd, June 3rd and June 5th.
Delegates attending either event will have the opportunity to sit in on technical presentations and ½ day technical workshops and a attend a vendor exhibition of tools and technology for the development of real-time and embedded systems. www.device-developer-conference.co.uk
"Advanced Debug Tools, Code Test, Version Control, Verification Tools and Software Standards have been a growing feature of recent conferences, so it made sense to create a dedicated event," said Richard. "There will be a lot expertise available to delegates, and the chance to meet a broad range of vendors of test technologies and tools, all under one roof."
Developed in collaboration with MISRA (Coding Standards), the Reliable Software Developers' Conference will feature a number of presentations in the morning, followed by a half-day technical workshop in the afternoon. The presentations will be free and open to delegates of both Conferences, but the half-day workshops will be subject to a charge of £75. Delegates will learn about developments in coding standards, test and verification tools and best practices and it will also be an opportunity to meet with many industry experts.
Refer to:http://embedded-computing.com/news/the-uk-may-2014/

2013年12月16日 星期一

Comprehensive customization for network appliances: meet our rackmount and micro box!

acrosser Technology, a world-leading network communication designer and manufacturer, introduces two network appliances that deliver great performance and protection while simplifying your network. Each product has its own target market and appeals to a unique audience.

Acrosser
’s ANR-IB75N1/A/B serves as an integrated Unified Threat Management (UTM) device that covers all of your networking security needs. Featuring a 3rd generation Intel Core i processor, increased processing throughput is easily made. For integration with information security systems, the device also features functions such as anti-virus, anti-spam, fire wall, intrusion detection, VPN and web filtering, in order to provide complete solutions to meet the demands of various applications.

Key features of the ANR-IB75N1/A/B include:
‧Support for LGA1155 Intel® Core ™ i7/i5/i3 processor / Pentium CPU
‧Intel B75 Chipset
‧2 x DDRIII DIMM, up to 16GB memory.
‧2 x Intel 82576EB Fiber ports
‧8 x Intel 82574L 10/100/1000Mbps ports
‧Two pairs LAN ports support bypass feature (LAN 1/2 + LAN 3/4)
‧LAN bypass can be controlled by BIOS and Jumper
‧CF socket, 2 x 2.5” HDD, 1 x SATA III, 1 x SATA II
‧Console, VGA (pinhead), 2 x USB 3.0 (2 x external)
‧Support boot from LAN, console redirection
‧Equipped with 80 Plus Bronze PSU to decrease CO2 dissipation and protect our environment
‧LCM module to provide user-friendly interface
‧Standard 1U rackmount size

As for our micro box, the AND-D525N2 provides more possibilities for different applications due to its small form factor (234mm*165mm*44mm). Aside from its space-saving design, the other 3 major features of the AND-D525N2 are its high performance, low power consumption and competitive price. Please send us your inquiry via our website (http://www.acrosser.com/inquiry.html), or simply contact your nearest local sales location for further information.
Key features of the AND-D525N2 include:
‧Intel Atom D525 1.86GHz
‧Intel ICH8M Chipset
‧x DDR3 SO-DIMM up to 4GB
‧1 x 2.5 inch HDD Bay, 1 x CF socket
‧4 x GbE LAN, Realtek 8111E
‧2 x USB2.0
‧2 x SATA II
‧1 x Console
‧1 x MiniPCIe socket

Besides In addition to these two models, Acrosser also provides a wide selection of network security hardware. With more than 26 years of rich industry experience, Acrosser has the ODM/OEM ability to carry out customized solutions, shortening customers’ time-to-market and creating numerous profits.

For all networking appliances product, please visit:
http://www.acrosser.com/Products/Networking-Appliance.html

Product Information – ANR-IB75N1/A/B:
http://www.acrosser.com/Products/Networking-Appliance/Rackmount/ANR-IB75N1/A/B/Networking-Appliance-ANR-IB75N1/A/B.html

Product Information – AND-D525N2:
http://www.acrosser.com/Products/Networking-Appliance/MicroBox/AND-D525N2/ATOM-D525-AND-D525N2.html

Contact us:
http://www.acrosser.com/inquiry.html

2013年12月10日 星期二

INDUSTRIAL ETHERNET GROWING


December 5, 2013 - The Chinese market for industrial Ethernet & Fieldbus Technologies grew by 18 million nodes in 2012. More than 3 million nodes used Ethernet and the remainder used Fieldbus technology.

Although Fieldbus has a large base of new connected nodes in China, the usage of Fieldbus is not as common as in developed countries such as Germany or the United States. This is mainly because Chinese customers are encountering networking technology much later than those developing countries.

However, the growing speed of Ethernet is quite considerable in China and we think it is a great opportunity for Chinese customers to upgrade their automation system under current market condition. Customers will just jump from old Fieldbus Technologies direct to Ethernet now and actually many of them are doing right now.  The Chinese market is currently engaged in extensive upgrading and new infrastructure construction, and that will require a great deal of Ethernet applications.

refer to:http://www.automation.com/portals/industrial-networks-field-buses/industrial-ethernet-growing-in-china

2013年12月1日 星期日

High Computing Performance for All Applications- F.I.T. Technology

The demand for computing performance in the IPC market continues to become stronger as the IT field advances. Acrosser’s new AES-HM76Z1FL has been designed to meet these demands.
The F.I.T. Technology used to build this new product reflects its 3 major features: fanless design, Intel core i processor and ultra thin frame. The fanless design not only reduces the risk of exposure to air dust, but also prevents fan-malfunction. With a height of less than 0.8 inches, AES-HM76Z1FL’s slim design makes itself FIT into every application.
As its structure and output interface show, AES-HM76Z1FL provides a wide range of choices, from HDMI, VGA, USB, and audio to GPIO output interfaces that suit almost all industries. For wireless communication needs, the AES-HM76Z1FL has a mini-PCle expansion slot which provides support on both 3.5G and WiFi.
Another fascinating feature of the AES-HM76Z1FL is its ease of installation for expansions. By disassembling the bottom cover, expansions such as CF cards, memory upgrades and mini-PCIe can be easily complete without moving the heat sink. Moreover, Acrosser adopts 4 types of CPU (Intel Core i7/i3, Intel Celeron 1047UE/927UE) for AES-HM76Z1FL, allowing it to satisfy the scalable market demands of different applications.
In conclusion, the AES-HM76Z1FL is truly a well-rounded product designed for diverse applications. To promote our star product AES-HM76Z1FL, Acrosser will launch a product testing campaign starting in January, 2014. Acrosser will provide selected applications with the new AES-HM76Z1FL for one month, and it’s free! For more detailed information, please stay tuned for our press release, or leave us an inquiry on our website at www.acrosser.com!

Product Information:
http://www.acrosser.com/Products/Embedded-Computer/Fanless-Embedded-Systems/AES-HM76Z1FL/Intel-Core-i3/i7-AES-HM76Z1FL.html

2013年11月14日 星期四

Acrosser unveils its ultra slim fanless embedded system with 3rd generation Intel core i processor

Acrosser Technology Co. Ltd, a world-leading industrial and embedded computer designer and manufacturer, announces the new AES-HM76Z1FL embedded system. AES-HM76Z1FL, Acrosser’s latest industrial endeavor, is surely a FIT under multiple circumstances. Innovation can be seen in the new ultra slim fanless design, and its Intel core i CPU can surely cater for those seeking for high performance. Therefore, these 3 stunning elements can be condensed as "F.I.T. Technology." (Fanless, Intel core i, ultra Thin)
The heat sink from the fanless design provides AES-HM76Z1FL with great thermal performance, as well as increases the efficiency of usable space. The fanless design provides dustproof protection, and saving the product itself from fan malfunction. AES-HM76Z1FL has thin client dimensions, with a height of only 20 millimeters (272 mm x183 mm x 20 mm). This differs from most embedded appliances, which have a height of more than 50 millimeters.
The AES-HM76Z1FL embedded system uses the latest technology in scalable Intel Celeron and 3rd generation Core i7/i3 processors with a HM76 chipset. It features graphics via VGA and HDMI, DDR3 SO-DIMM support, complete I/O such as 4 x COM ports, 3 x USB3.0 ports, 8 x GPI and 8 x GPO, and storage via SATA III and Compact Flash. The AES-HM76Z1FL also supports communication by 2 x RJ-45 gigabit Ethernet ports, 1 x SIM slot, and 1 x MinPCIe expansion socket for a 3.5G or WiFi module.
Different from most industrial products that focus on application in one specific industry, the AES-HM76Z1FL provides solutions for various applications through the complete I/O interfaces. Applications of the AES-HM76Z1FL include: embedded system solutions, control systems, digital signage, POS, Kiosk, ATM, banking, home automation, and so on. It can support industrial automation and commercial bases under multiple circumstances.
Key features:
‧Fanless and ultra slim design
‧Support Intel Ivy Bridge CPU with HM76 chipset
‧2 x DDR3 SO-DIMM, up to 16GB
‧Support SATA III and CF storage
‧HDMI/VGA/USB/Audio/GPIO output interface
‧Serial ports by RS-232 and RS-422/485
‧2 x GbE, 1 x SIM, and 1 x MiniPCIe(for3G/WiFi)


Contact us:

2013年11月11日 星期一

Leveraging upgrades in processing power

At the dawn of the “Industrial Internet,” the ante is being upped for modular embedded systems. More and more machines are being connected, many in remote and challenging environments such as oil and gas, locomotives, transportation, and ship-propulsion systems. To meet the demand for more data in less time, these systems must work faster and longer. Accelerating with the demand for data is the evolution of computer processors. But businesses can’t afford the downtime required to replace processors, or the expense of replacing the carrier board when upgrading the processor. According to a 2006 Department of Energy study, idle industrial machinery can cost as much as $800 per minute.

What’s needed is a modular embedded computing architecture that addresses these cost and downtime issues. Perhaps the most compelling of the modular architectures available today is COM Express. COM Express provides the requisite computing power for today’s increasingly connected world while also extending the lifespan of the underlying system. As chip technology evolves, users can switch out the module without adverse effect on the underlying hardware and assets – saving time and money. The modularity, simplicity, and reliability of COM Express technology help businesses remain competitive, profitable, and flexible.

Leveraging upgrades in processing power
COM Express-based technology was developed in 1994 by PICMG, a 250-company consortium that develops open specifications for high-performance computing applications. Today, the COM Express form

factor comes in four sizes:
Mini: 55 x 84 mm
Compact: 95 x 95 mm
Basic: 95 x 125 mm
Extended: 110 x 155 mm
These different sizes of COM Express modules help businesses to remain competitive by maximizing the performance of critical infrastructure systems in an increasingly connected world in any conceivable industrial application.

refer to:http://industrial-embedded.com/articles/rugged-increasingly-connected-world/

2013年11月4日 星期一

New standards using model-based design

With the FAA and EASA adopting aviation standards such as DO-178C and ARP4754A, UAV software developers should familiarize themselves with these standards, particularly when transitioning to model-based design.
Few applications place more importance on verification, or prescribe more process guidance, than aviation. The FAA and its European equivalent, EASA, provide guidance using standards such as ARP4754 for aircraft systems and DO-178B for flight software. These standards are often used outside of civil aviation, in whole or in part, for applications including military aircraft and land vehicles. Adoption for UAV programs is rapidly growing because of the FAA’s recent decision to require UAS and OPA certification via FAA Order 8130.34A. UAV systems are heterogeneous, and not restricted just to flight software. Therefore, other standards are used such as DO-254 for hardware and DO-278 for ground and space software.
With model-based design, UAV engineers develop and simulate system models comprised of hardware and software using block diagrams and state charts, as shown in Figures 1 and 2. They then automatically generate, deploy, and verify code on their embedded systems. With textual computation languages and block diagram model tools, one can generate code in C, C++, Verilog, and VHDL languages, enabling implementation on MCU, DSP[], FPGA[], and ASIC hardware. This lets system, software, and hardware engineers collaborate using the same tools and environment to develop, implement, and verify systems. Given their auto-nomous nature, UAV systems heavily employ closed-loop controls, making system modeling and closed-loop simulation, as shown in Figures 1 and 2, a natural fit.
ARP4754A addresses the complete aircraft development cycle from requirements to integration through verification for three levels of abstraction: aircraft, systems, and item. An item is defined as a hardware or software element having bounded and well defined interfaces. According to the standard, aircraft requirements are allocated to system requirements, which are then allocated to item requirements.
The fact that ARP4754A addresses allocation of system requirements to hardware and software components is significant to UAV developers, especially suppliers. Some suppliers might have claimed that UAV subsystem development was beyond the scope of the original ARP4754, even for complex subsystems containing hardware and software, but not anymore. ARP4754A also more clearly refers to DO-178 and DO-254 for item design. In fact, the introductory notes for ARP4754A acknowledge that its working groups coordinated with RTCA special committees to ensure that the terminology and approach being used are consistent with those being developed for the DO-178B update [DO-178C].
Given the high coupling among systems, hardware, and software for UAVs, it is helpful that the governing standards now clarify relationships between systems and hardware/software subsystems.
ARP4754A recommends the use of modeling and simulation for several process-integral activities involving requirements capture and requirements validation.
ARP4754A Table 6 recommends (R) analysis, modeling and simulation (tests) for validating requirements at the highest Development Assurance Levels (A and B). For Level C, modeling is listed as one of several recommendations. While ARP4754 made similar recommendations, ARP4754A provides more insight and states that a representative environment model, such as the plant model shown in Figure 1, is an essential part of a system model.
Also noted in ARP4754A is that a graphical representation or model can be used to capture system requirements. The standard now notes that a model can be reused for software and hardware design.
If engineers use models to capture requirements, ARP4754A recommends engineers consider the following:
1. Identify the use of models/modeling
2. Identify the intended tools and their usage during development
3. Define modeling standards and libraries
When using model-based design with ARP4754A and DO-178C, additional verification capabilities are often needed beyond in-the-loop testing described in Table 2. These including requirement tracing, model standard checking, model-to-code structural equivalence checking, and robustness analysis using formal methods. For UAVs, rigorous verification that includes multiple verification technologies is paramount given their autonomous nature and system complexity.
DO-178C
Not surprisingly, one of the first changes new in DO-178C is an explicit mention of ARP4754A in Section 2: System life-cycle processes can be found in other industry documents (for example, SAE ARP4754A).
Clarification updates aside, such as the one noted earlier, DO-178C does not differ significantly from DO-178B, at least at first glance. In fact, a casual reader might miss an item mentioned in Section 1.4: How to Use this Document: One or more supplements to this document exist and extend the guidance in this document to a specific technique… if a supplement exists for a specific technique, the supplement should be used …
In other words, the standard’s big changes are captured in the supplemental documents, such as RTCA DO-331, Model-Based Development and Verification Supplement to DO-178C and DO-278A.
Pertinent to this discussion, a long-standing issue with DO-178B for practitioners of model-based design is the uncertainty in mapping DO-178B objectives to model-based design artifacts. Addressing this mapping was a main goal of the DO-178C Sub-Group (SG-4) focused on model-based design. No single mapping sufficed, so several mappings are provided in DO-331. Some include the concept of a Specification model, which is a model separate from that of the one used for design and code generation. The other concept is a Design model, which serves as the detailed requirements used to generate code.

refer to:
http://mil-embedded.com/articles/transitioning-do-178c-arp4754a-uav-using-model-based-design/

2013年10月28日 星期一

The networking of Industry 4.0

We are facing a potentially exponential increase in the amount of data manufacturing systems will handle as vision systems, batch control, regulatory compliance, quality management and more will mean that the amount of data those networks have to handle is going to rocket.

As a result, we require sufficient bandwidth to allow for this increased use. At present, CC-Link IE is the only industrial automation networking technology that can provide a gigabit (1 Gbit/s) of bandwidth, which makes it exceptionally well placed to deal with the demands of Industry 4.0.

To find an example of how data intensive these applications can be one only has to look at the needs of the leading Korean flat panel display manufacturers. Their tolerance for so-called ‘dead pixels’ is almost zero. To put this into perspective, a modern HD screen has 1080 vertical pixels horizontally and 1920 vertically. That’s 2,073,600 pixels on each unit. The manufacturing processes have to check each of these pixels, hundreds of times a day to ensure quality and control yield. It’s easy to see how quickly applications like this will generate vast volumes of data.

As another example, the global automotive industry produces countless different combinations of each in-vehicle model at an incredible rate. It’s typical for an assembly plant to produce a complete vehicle at a rate of more than one per minute.

refer to:http://www.connectingindustry.com/automation/the-networking-implications-of-industry-40.aspx

2013年9月24日 星期二

Parts of the embedded system marketing


Part of the Gizmo Explorer Kit, the package “was designed to be flexible so that designers can customize the system according to their specific industrial development goals,” says Kerry Brown, Vice President and Chief Operations Officer, Sage Electronic Engineering.

Embedded computer is an Intel Atom-based platform equipped with interfaces like SATA, Gigabit Ethernet, and PCI Express, and is suited for applications such as networking appliance Storage (NAS) and network security, Garman says. “Professional embedded developers working on commercial products will like the fact that the MinnowBoard is open hardware, and can be customized without having to sign any Non-Disclosure Agreements (NDAs),” he adds.

GizmoSphere has also entered the maker market with x86 process technology, including an industrial AMD Embedded G-Series APU capable of 52.8 GFLOPS at under 10 W on their Gizmo board.


refer to:
http://embedded-computing.com/articles/diy-pushes-open-hardware-kindergarten-kickstarter/

2013年8月19日 星期一

Making up for each other in the embedded industry



With the advancement of customer success at the helm, the innovative strategies of JR automation and AWL-Techniek have aligned, creating a partnership that will allow global customer bases to benefit from an equally global system integrator presence. JR will service and support customers in the US, Canada, and Mexico, and AWL will support customers in Europe and China. Similarly, AWL is a leader in production industrial computer and experienced in the automotive and general industries with proficiency in laser welding.  With JR and AWL’s standing as leading global system integrators, this strategic embedded system partnership will facilitate an environment rich with knowledge, ability, and possibility for our customers.


refer to: http://www.automation.com/jr-automation-and-awl-techniek-join-forces

2013年7月30日 星期二

Stressing focus on embedded software dubugging



"For anyone working in the development of code for the automotive embedded computers sector, this should prove a very useful day," said Barry Lock, UK Manager of Lauterbach embedded computers. "There will be a lot of expertise at this event, and the presenters will be discussing the very latest developments in chip technology, software solutions and debug tools."

Much of the content will be based around the embedded computers development and validation of Autosar compliant code and the development of code for specific devices such as the BOSCH GTM, the AURIX and Freescale's Nexus based Qorivva solutions. Some of the presentations will also touch on the debugging of code on multicore systems. Delegates will also have the opportunity to discuss their specific challenges and requirements.

2013年7月15日 星期一

Conflicting ideas for embedded computer industry



Designers of these embedded systems needed a small form factor, extremely rugged DDR3 module. This standard relieves designers from the former limitations of commercial-grade products that required soldering, straps, glue, or tie-downs to secure the module. However, the JEDEC membership initially did not recognize the need to accommodate ECC when it was developing the DDR2 specification on the SODIMM form factor because most laptop chipsets did not support ECC at the time. Seeing the need for ECC that could be implemented on faster DDR2 memory modules in embedded systems, Virtium sponsored the embedded  specification within JEDEC, which has been extended now to DDR3 and DDR4 modules.

refer to: http://embedded-computing.com/articles/ruggedization-memory-module-design/



2013年5月7日 星期二

See you at 2013 ESEC!

Industrial PC, gaming platform, networking appliance
ACROSSER Technology announces our participation in 2013 the Embedded Systems Expo and Conference (ESEC) from May 8th to the 10th. The event will take place at the Tokyo International Exhibition Center in Tokyo, Japan. We warmly invite all customers to come and meet us at the west hall, booth number: WEST 10-61.

2013年4月23日 星期二

On networks built using Commercial Off-The-Shelf (COTS) building blocks

In recent years, building, maintaining, and evolving proprietary network systems for telecom-grade applications that are highly available and "always on" have become increasingly prohibitive from the perspective of cost, risk management, time to revenue, and so on. The custom-built approach becomes even less cost effective as Communications Service Providers (CSPs) move toward offering cloud-based services, where they have to compete with non-traditional providers that offer such services on networks built using Commercial Off-The-Shelf (COTS) building blocks.

In vehicle pc, Industrial PC, single board computer
State of the industry
Wide adoption of several of these key standards has resulted in commercially viable COTS building blocks – hardware and software – that address various functional layers in a network-ready system quickly and cost effectively (Figure 1). This approach is being broadly employed by various industry players, and such platforms have been successfully deployed in networks worldwide. A few critical challenges, however, still remain:
In vehicle pc, Industrial PC, single board computer
Figure 1: The communications industry is migrating towards vertically integrated platforms.
There is increasing industry recognition of these challenges, and key players are stepping forward to effectively address them.

Network Applications Platform
The CSPs' need to bring innovative services to market quickly and at a competitive cost creates a direct challenge for NEPs to provide telecom network elements that meet their requirements. Not only does the approach of using platforms that are built with field-proven COTS building blocks help NEPs save R&D expense and time, it enables them to focus their precious resources on revenue-generating applications and services.
Oracle Corporation has been actively pursuing product programs designed to help NEPs transition to this approach. The Oracle Network Applications Platform (ONAP) is a pre-integrated, pre-tested engineered system using hardware and software assets designed to meet mission-critical communications network workloads. These COTS assets, that have already been deployed and tested in numerous commercial deployments in a variety of markets, span all layers of the platform – hardware, storage, Operating System (OS),virtualization, service availability, management, and a host of application services (Figure 2).
In vehicle pc, Industrial PC, single board computer
Figure 2: The Oracle Network Applications Platform provides high levels of availability by leveraging industry-standard COTS assets at all levels of the stack.

ONAP is designed with the objective of addressing the functional and non-functional requirements of a wide set of network and back office applications, and others. The extensible architecture of ONAP has been designed to provide resident applications with 5-nines and higher availability, end-to-end management, scalability, and reliability – all supported in multiple operating environments.
ONAP's architecture is designed to enable customers to maximize the value of their investments by leveraging a carrier-grade platform on which they can swiftly develop and deploy applications. It also provides optimized performance, High Availability (HA), and seamless integrated operations management for mission-critical deployments. ONAP accomplishes this by leveraging best-of-suite COTS technologies, including extensive use of the various services defined by the SAF to ensure continuous service availability of applications hosted on the platform.
The key tenets of the ONAP architecture are summarized here.
Unified Availability
ONAP implements a comprehensive availability management framework that, along with several supporting services, provides end-to-end availability lifecycle management for all layers of the system. ONAP Unified Availability monitors the health and availability of the platform infrastructure services, which affect application availability. This  to a cohesive availability management  that encompasses the entire stack – from hardware to the application – and drives the highest level of application availability. This is a unique approach that brings together technologies that offer carrier-grade service availability to telecom and IT applications. These technologies form the basis of two COTS products that have been field-hardened in a large number of telecom and enterprise applications worldwide for several years.
...
Through the use of the SAF Application Interface Specification (AIS)Availability Management Framework (AMF) and Cluster Membership (CLM) services, these two powerful products have been integrated within ONAP and offer critical functionality to ensure data and session integrity in a wide variety of network and back office applications.
ONAP abstracts the underlying platform from the application developers by providing a set of SAF AIS Application Programming Interfaces (APIs) and Clusterware interfaces as part of a Software Development Kit (SDK).
Unified Management
ONAP brings forth a set of COTS technologies and products, each with sophisticated functionality at various layers of the integrated stack. Managing such an integrated platform can be complex and challenging. ONAP implements a comprehensive management framework and related services that provide a consistent and unified approach to managing the entire platform – from hardware to the application(s) and the intervening middleware, Platform Service Modules (PSMs), application services, and so on. The Unified Management capability leverages field-proven technologies and products that have been widely deployed to provide management solutions to a variety of applications. Unified Management covers a broad set of management requirements of the platform
...
Extensible architecture
ONAP has been designed and implemented to meet the requirements of a wide variety of network and network-facing applications. Whereas the base platform addresses the common requirements of such applications, ONAP also provides the ability to optionally integrate other technologies and solutions from Oracle, as well as third-party databases, Service Oriented Architectures (SOAs), application services, and protocol suites, for example. Such solutions, referred to by ONAP as PSMs, become native to ONAP and enjoy the benefits of Unified Availability and Unified Management once integrated.
Operating environments
ONAP offers four major operating environments – an OS and CPU combination that exposes a particular Application Binary Interface (ABI) for use by the overlaying application
...
Virtualization of the operating environment is provided through the use of Oracle Virtual Server (OVS), which offers a broad set of capabilities:
...
Vertical Integration
ONAP's uniqueness is due to yet another important factor. Other than any potential optional third-party PSMs, Oracle owns the intellectual property of the ONAP engineered COTS system, offering several advantages to the user
...
Integration Development Kit
Integration of applications on ONAP is supported through a set of APIs provided by an Integration Development Kit (IDK). These API expose various capabilities of Unified Availability and Unified Management for use by the application integrator. This kit also provides tools necessary to create software releases for ONAP deployment. Once the overall configuration of the system is determined, the IDK is used to create an appliance ready for intended deployment.
A final word
In recent years the COTS hardware and software industry has made significant strides towards building and providing products that meet the functionality, availability, manageability, and scalability requirements of demanding applications such as telecom. Network elements built through integration of such components have become viable and are being deployed in networks worldwide. However, this approach is not without its challenges – NEPs and CSPs following this path often have to manage multiple suppliers, coordinate their developments, and navigate disparate and complex support structures. By adopting a platform such as ONAP, NEPs and CSPs can leverage the ecosystem effectively and save cost, time, and effort required to build or integrate such systems in-house.

 



refer to : http://xtca-systems.com/articles/engineered-cots-network-systems/

2013年4月9日 星期二

Digital gaming Signage Industries


Embedded computers, gaming platform, Console server

Touchscreen Technology

o Resistive Touch Screen Technology

o The cost effective workhorse of touch technologies

o Surface Acoustic Wave (SAW) Touch Screen Technology

o Superior optical characteristics for best clarity

o Capacitive Touch Screen Technology

o Durable, cost effective solution, impervious to on-screen contaminants

o Infrared Touch Screen Technology

o Suitable for harsh environments and outdoor applications

o Large touch screens for digital signage



2013年3月25日 星期一

The open source software movement has forever transformed the mobile device landscape

Single board computer, Panel PC, networking appliance

The speed of innovation in automotive IVI is making a lot of heads turn. No question, Linux OS and Android are the engines for change.

The open source software movement has forever transformed the mobile device landscape. Consumers are able to do things today that 10 years ago were unimaginable. Just when smartphone and tablet users are comfortable using their devices in their daily lives, another industry is about to be transformed. The technology enabled by open source in this industry might be even more impressive than what we’ve just experienced in the smartphone industry.

The industry is automotive, and already open source software has made significant inroads in how both driver and passenger interact within the automobile. Open source stalwarts Linuxand Google are making significant contributions not only in the user/driver experience, but also in safety-critical operations, vehicle-to-vehicle communications, and automobile-to-cloud interactions.

Initially, automotive OEMs turned to open source to keep costs down and open up the supply chain. In the past, Tier 1 suppliers and developers of In-Vehicle Infotainment (IVI) systems would treat an infotainment center as a “black box,” comprised mostly of proprietary software components and dedicated hardware. The OEM was not allowed to probe inside, and had no ability to “mix and match” the component parts. The results were sometimes subquality systems in which the automotive OEM had no say, and no ability to maintain. With the advent of open source, developers are now not only empowered to cut software development costs, but they also have control of the IVI system they want to design for a specified niche. Open source software, primarily Linux and to some extent Android, comprises open and “free” software operating platforms or systems. What makes Linux so special are the many communities of dedicated developers around the world constantly updating the Linux kernel. While there are many Linux versions, owned by a range of open source communities and commercial organizations, Android is owned and managed exclusively by Google.
Linux has further opened up the possibilities with safety-critical operations and multimedia communications. Hardware companies have followed suit with more IVI functions built onto a single piece of silicon, improving security and performance.
The available power of multicoreSoC hardware hosting a Linux operating system is fueling rapid expansion in vehicle software in the area of telematics. In Europe, for example, by 2015, all new cars must be equipped with the eCall system, to automatically alert emergency services in the event of a collision. Services such as insurance tracking, stolen vehicle notification, real-time cloud data (traffic, weather, road conditions ahead), car-to-car communication, driverless car, diagnostics, and servicing are also made available via in-car Internet services. To operate in this space, IVI hardware needs to have multicore processor support, GPU/high-performance graphics with multiple video outputs, Internet connectivity, and compatibility with existing in-car networks such as CAN, MOST, and AVB. Several components are already on the market, and the future potential is exciting.
Consolidating multiple functions into a single Linux-based Electronic Control Unit (ECU) allows for a reduction in component count, thereby reducing overall vehicle costs. Maintenance becomes easier. And the wire harness costs are reduced as the total ECU count drops. As Linux becomes more widespread in vehicles, additional technologies will consolidate – for example, instrument clusters and AUTOSAR-based ECUs may coexist with infotainment stacks. It’s also important to realize that the complexity of software and the amount of software code used will only increase as these new technologies become standard. Already more than 100 million lines of code are used in the infotainment system of the S-Class Mercedes-Benz and according to Linuxinsider.com, and that number is projected to triple by 2015 (Figure 1).

Single board computer, Panel PC, networking appliance

Figure 1: Software complexity in IVI systems continues to grow. Today, the IVI system of an S-Class Mercedes has 100m lines of code. By 2015, it is expected to be 300m. A Linux-based solution, capable of scaling to handle the complexity, is mandatory.

Android apps hit the road
The Android operating system, on the other hand, was designed from the start to support mobile devices and has proved that it can serve more than mobile phones. Using the Android OS for in-vehicle entertainment provides all the entertainment features offered by a top-of-the-range, in-dash infotainment system with the addition of informative, driver-assisting content including hands-free calling, multimedia center, and a navigation system/Google maps. For an open source expandable system (whereby the framework can be extended and applications can be developed for it), the Android OS can be enhanced to support multiple audio and video feeds. For example, IVI audio requirements include music, phone calls, sensor warnings, and navigation announcements, which must be managed and prioritized. Managing multiple displays, with an information-focus for the driver and entertainment-focus for passengers, is also a requirement. The UI for the driver should be arranged to minimize distraction, while passengers will want as much content as possible from their UIs. But many automotive OEMs and developers ask, “Why not just use the Android smartphone and tie it into a vehicle’s dash?” Not only would this be more cost effective for the developer, but the user would have instant familiarity with the system.
One organization promoting the use of the smartphone as an IVI in-dash system is the Car Connectivity Consortium (CCC). The CCC provides standards and recipe books for tethering a smartphone to the infotainment head unit. The CCC members implement MirrorLink (Figure 2), a technology standard for controlling a nearby smartphone from the in-car infotainment system screen or via dashboard buttons and controls. This allows familiar smartphone-hosted applications and functions to be easily accessed. CCC members include more than 80 percent of the world’s automakers, and more than 70 percent of global smartphone manufacturers. The MirrorLink technology is compatible with Mentor Embedded’s GENIVI 3.0 specification Linux base platform solution.

Single board computer, Panel PC, networking appliance

Figure 2: An example of smartphone in-dash tethering: Drivers use the same smartphone apps in the vehicle as they do on their own smartphone, which provides a great deal of familiarity.

A recent example of smartphone tethering can be found in certain subcompact models from U.S. auto manufacturer General Motors. Select Chevrolet models carry the “MyLink” in-dash infotainment system.
From both a cost and ease-of-use perspective, tethering a smartphone makes a lot of sense. But there’s another reason to consider. Some automotive manufacturers are nervous about being too dependent on Google – as Google is the sole provider and owner of the Android mobile platform. Android built into an IVI system is an 8- to 10-year commitment, and a lot can happen in that time regarding license fees or terms of use.
Linux and Android driving together?
Despite the strengths of and differences between these two popular platforms, recent embedded architecture developments now allow the Linux and Android operating systems to happily coexist. And this might be a very good thing. For example, Android can be hosted on top of Linux using Linux Container Architecture (LXC) (Figure 3). The resources, access control, and security of the Android client are managed by the host Linux operating system. For system designers concerned about the security of Android, this represents a good way to offer Android app access, and keep other system functions on a standard Linux platform. Multicore System-on-Chip (SoC) platforms make this architecture even more attractive, as there are sufficient resources for both Linux and Android domains to perform well simultaneously. The CPU resources can be shared, along with memory, graphics processing resources, and other peripherals. The output of the two domains can be recombined into a common Human Machine Interface (HMI) allowing the user to select functions from both domains.

Single board computer, Panel PC, networking appliance

Figure 3: There are several ways to include Android (Android apps) in a Linux-based IVI solution. One method, which is becoming increasingly more popular, is using Linux Container Architecture. Here, Android sits as a guest OS on top of the Linux kernel. Privileges and permissions are tightly controlled.

Exciting times ahead
Both Linux and Android are extremely versatile and powerful operating systems worthy of consideration in IVI systems. We are still in the infancy stages in what these two open source platforms can do for IVI. Now is the perfect time to starting developing or to join a consortium so that you too can reap the fruits of what IVI promises down the road.




refer:http://embedded-computing.com/articles/automotive-source-drives-innovation/